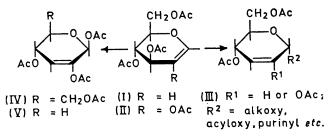
1385

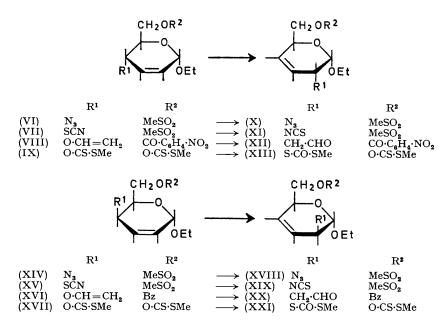

Allylic Isomerisations of Unsaturated Carbohydrate Derivatives. A New Approach to the Synthesis of Amino, Thio, and Branched-chain Sugars

By R. J. FERRIER*[†] and N. VETHAVIYASAR

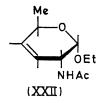
(Department of Chemistry, Birkbeck College, University of London, Malet Street, London WC1E 7HX)

Summary 2,3-Unsaturated hexopyranoside derivatives with azido-, thiocyanato-, vinyloxy-, and (methylthio)thiocarbonyloxy-groups at C-4 rearrange thermally to give 3,4-unsaturated isomers with azido-, isothiocyanato-, acetaldehydo-, and (methylthio)carbonylthio-groups attached to C-2; the asymmetry of C-4 in the initial compounds is transmitted to C-2 during the isomerisations.

1,2-UNSATURATED cyclic carbohydrates, *e.g.* tri-O-acetyl-Dglucal (I) and its 2-acetoxy-derivative (II), in the presence of acid catalysts, can be converted into 2,3-unsaturated glycosyl compounds (III), *e.g.* glycosides¹ and nucleosides,² with high stereospecificity in reactions which offer a novel approach to the synthesis of saturated compounds of biochemical significance. In addition, for example, the 1,2unsaturated compound (II) can be caused to isomerise thermally to the 2,3-unsaturated ester (IV) in a reaction believed to proceed by the S_Ni' mechanism.³ Such allylic isomerisations at other sites of carbohydrates are not well known, although 1,2,4-tri-O-acetyl-3-deoxy- β -D-glyceropent-2-enopyranose (V) apparently rearranges to a 3,4unsaturated compound prior to fragmentation in the mass



spectrometer,⁴ and we report here the isomerisation of several 2,3-unsaturated glycoside derivatives bearing various allylic groups which contain the general structural feature C-4-X-Y=Z and which can take part in allylic rearrangements involving six-membered cyclic transition


† Present address: Department of Chemistry, Victoria University of Wellington, New Zealand.

states or intermediates.⁵ By this means, 2,3-unsaturated derivatives [(VI)—(IX) and (XIV)—(XVII)] obtained from the readily available tri-O-acetyl-D-glucal have been converted into 3,4-unsaturated isomers [(X)-(XIII) and (XVIII)—(XXI)], new functionality has been introduced at C-2, and the potential of unsaturated carbohydrate compounds as intermediates in the synthesis of saturated analogues has been extended.

in products (XI) and (XIX) were identified by their broad absorptions near 2100 cm^{-1} (thiocyanates give sharp absorptions near 2160 cm^{-1}), the substituted acetaldehyde groups in compounds (XII) and (XX) by appropriate n.m.r. signals and by the reducing properties, and the (methylthio)carbonylthio-groups in the esters (XIII) and (XXI) by the upfield shifts [1.65 and 1.8 p.p.m. relative to 4-H in compounds (IX) and (XVII)] of the ester (2-H) protons.

The azides (VI) and (XIV) and the thiocyanates (VII) and (XV) were prepared from the corresponding 4,6-dimethanesulphonates by nucleophilic displacements using sodium azide and potassium thiocyanate in NN-dimethylformamide at, or close to, room temperature. Reactions occurred preferentially at the secondary, allylic positions (4-H resonances affected specifically), without rearrangement of the double bonds (1-H coupled to the vinylic protons, and m.s. fragmentations caused loss of the O_R, C-5, and C-6 sections of the molecules⁴), and with configurational inversion at C-4 (change in signs of optical rotations; consistent $J_{4,5}$ values).⁶ Direct substitutions were used in the preparations of the vinyl ethers (VIII) and (XVI)⁷ and the xanthate esters (IX) and (XVII).⁸ Furthermore, the products fragmented by loss of ethyl formate in the mass spectrometer, indicating that the double bonds were at position $3,4.^4$

As is to be expected from the symmetry of the azidogroup, the azide reactions did not proceed to completion. Nevertheless, from the equilibrium mixture of compounds

The	isom	nerisa	tion	of hex-	2-enopyra	nosides	to	hex-3-enopyranosides	

	Yield				
Compound	Temperature (°)	Time (h)	Solvent	Product	(% isolated)
(VI)	140	4	HCONMe ₂	(X)	
(VII)	140	6	HCONMe ₂	(XI)	52
(VIII)	185	3.5	PhNO ₂	(XII)	75
(IX)	140	2	HCONMe,	(XIII)	37
(XIV)	100	1.5	PhMe	(XVIII)	
(XV)	100	1.0	PhMe	(XIX)	>83
(XVI)	180	0.6	PhNO ₂	(XX)	70
(XVII)	120	1	PhMe	(XXI)	100

The isomerisations were effected under the conditions given in the Table, were followed by t.l.c., and were all characterised by changes in the signs of the optical rotations: this is consistent with expectations for such suprafacial allylic rearrangements.⁹ The isothiocyanate groups (VI) and (X) the 3,4-unsaturated acetamido-derivative (XXII) was isolated following lithium aluminium hydride reduction and acetylation; it was also obtained from the isothiocyanate (XI) by treatment with boiling acetic anhydride in the presence of sodium acetate followed by reductive removal of the methanesulphonyloxy-group. On the other hand, the thiocyanate-isothiocyanate isomerisations and the Claisen rearrangements proceeded cleanly and apparently to completion; in the same way, the threo-bis-xanthate (XVII) reacted smoothly but the erythro-isomer (IX) gave two products, the second having apparently been formed by attack of the thiomethyl sulphur atom at C-2 and loss of carbon oxysulphide.

Presumably the greater reactivity of the threo-compounds (XIV-XVII) in reactions of this type (Table) follows from the quasi-axial orientation of their C-4 substituents and the consequent relative ease with which cyclic transition states such as are involved in the [3,3]-sigmatropic shift reactions can be formed.

(Received, August 27th, 1970; Com. 1443.)

 ¹ R. J. Ferrier and N. Prasad, J. Chem. Soc. (C), 1969, 570; R. J. Ferrier, N. Prasad, and G. H. Sankey, *ibid.*, p. 587.
 ² E. E. Leutzinger, R. K. Robins, and L. B. Townsend, *Tetrahedron Letters*, 1968, 4475; K. Onodera and T. Yajima, *Carbohydrate* Res., 1970, 13, 97.

¹⁹⁷⁰, 13, 97.
³ R. J. Ferrier, N. Prasad, and G. H. Sankey, J. Chem. Soc. (C), 1968, 974.
⁴ R. J. Ferrier, N. Vethaviyasar, O. S. Chizhov, V. I. Kadentsev, and B. M. Zolotarev, Carbohydrate Res., 1970, 13, 269.
⁵ R. H. DeWolfe and W. G. Young in "The Chemistry of Alkenes," ed. S. Patai, Interscience, New York, 1964, p. 681.
⁶ D. M. Ciment, R. J. Ferrier, and W. G. Overend, J. Chem. Soc. (C), 1966, 446.
⁷ W. H. Watanabe and L. E. Conlon, J. Amer. Chem. Soc., 1957, 79, 2828.
⁸ L. Hough, J. E. Priddle, and R. S. Theobald, Adv. Carbohydrate Chem., 1960, 15, 91.
⁹ J. A. Mills, J. Chem. Soc., 1952, 4976.